Astronomi Bilgi Bilim

Hawking Radyasyonu Nedir? Kara Delikler Zamanla Buharlaşıp Yok Oluyor Olabilir mi?

8
Lütfen giriş yap veya kayıt ol bunu yapmak için.

Kara Delikler Neden Işımalı?

Bir madde kara deliğe girdiğinde, artık Evren’in geri kalanından tamamen izole olmuş demektir. Hawking’den önce bilim insanları, kara deliğe düşen cisimlerin bir daha asla kurtulamadığını, dolayısıyla kara deliklerin tek yönlü bir yol olduğunu düşünüyorlardı. Onlara göre kara delikler, etrafa hiçbir madde, enerji veya bilgi saçmıyorlardı. Ancak bu durum, fizikçilerin entropi adını verdiği düzensizlik ölçüsünün de ortadan kalkması anlamına gelmektedir. Kara delikler içinde maddelerin yok olabilmesi, Evren’i daha az düzensiz (veya daha düzenli) hale getirdiği için, kara deliklerin bu özelliğinin termodinamiğin ikinci yasasını çiğnediği düşünülüyordu.

 

Hawking, bu görüşe katılmıyordu. Hawking’e göre kara delikler, termodinamiğin ikinci yasasına uyuyorlardı ve entropileri zamanla artmak zorundaydı. Bu kritik bir kabuldü; çünkü entropisi olan her şeyin bir sıcaklığı olmak zorundadır![2] Bir diğer deyişle entropi, her zaman radyasyon yayan ısı enerjisini tarif etmenin başka bir yolundan ibarettir. Eğer olay ufku entropiye sahip olsaydı, bir şekilde parlamalıydı. Yani kara delikler, göründükleri kadar siyah olamazdı.

Ancak Hawking, kara delik problemini çözmeye çalışan tek fizikçi de değildi. O zamanlar Princeton Üniversitesi’nde bir fizik öğrencisi olan Jacob Bekenstein, bir madde bir kara deliğe düştüğünde, kara deliğin inanılmaz kütleçekiminden en çok etkilenen bölge olan olay ufkunun yüzey alanının bir miktar büyümesi gerektiğini gösterdi. Bu yüzey alanındaki değişimin, aksi takdirde kaybolacak entropiyle eşdeğer olduğunu gösterdi ve bu öneri, paradoksu çözebilirdi.

Ne var ki Hawking, bu açıklamadan da çok emin değildi. Bu nedenle Hawking, yaptığı hesaplamalar ile kara deliklerin sıcaklığını belirlemeye çalıştı. Bunu yapmak için, Einstein’ın büyük ölçeklerde kütleçekiminin nasıl çalıştığını izah eden Genel Görelilik Teorisi ile, Evren’in en küçük ölçekte nasıl çalıştığını tarif eden kuantum mekaniğinin öngörülerini birleştirdi. Bu iki teori, günümüzde halen tam olarak birleştirilebilmiş değildir ve fizikçilerin en büyük hayallerinden birisi, Evren’i en küçükten en büyüğe kadar tek seferde açıklayabilecek olan Her Şeyin Teorisi’ne ulaşmaktır. Hawking, bu iki teoriden de yararlanmak zorunda kaldı; çünkü her iki teori de kara deliklerin olay ufkunda olan bitenlerin nasıl çalıştığını izah etmemizi sağlamaktadır.

Bekenstein’ın görünüşte absürt önerisini çürütmeye yönelik çabalarında Hawking, bu konuyu diğer fizikçilerle tartıştı ve mümkün olmadığını göstermek için matematiksel modeller kullanmayı denedi. Fakat Hawking, Bekenstein’ı çürütmek bir yana dursun, kara deliklerin gerçekten de bir çeşit “soğuk ışık”la parladığını buldu. Hatta bunu, şu ölümsüz cümlelerle kitlelere ulaştırdı:

Kara delikler, bir zamanlar sandığımız gibi sonsuz hapishaneler değildir. Kara deliklerin içinden bir şeyler kaçabilmektedir; hem dışarıya, hem de belki diğer evrenlere… Dolayısıyla eğer kendinizi bir kara deliğin içinde gibi hissediyorsanız, vazgeçmeyin. Bir çıkış yolu var!

Kara Delikler Hawking Radyasyonunu Nasıl Üretiyor?

Bir kara deliğin civarındaki olay ufkundan parçacıkların dışarıya yayılmasının ardındaki fiziksel süreç oldukça karmaşıktır ve kuantum alan teorisinin matematiksel altyapısının sağlam bir şekilde anlaşılmasını gerektirir.

Ancak basite indirgeyerek anlatmaya çalışacak olursak, öncelikle şunu anlamanız gerekir: Uzay boşluğu, birçok yönden hiç de boş değildir! Elbette, tüm maddeyi, tüm radyasyonu, tüm enerji kuantumlarını uzayın bir bölgesinden tamamen çıkarmayı hayal edebilirsiniz, ta ki geriye kalan bu Evren’den çıkarabileceğimiz her şey “hiçbir şeye” yakın olana kadar.

Ancak bu durumda bile, o boş uzayın enerjisinin “sıfır noktası”, yani kuantum mekaniğine dayalı bir sistemin sahip olabileceği en düşük enerji seviyesi (İng: “zero-point energy”), sıfır değildir. Çıkarabileceğiniz her şeyi çıkarsanız bile, uzayın kendisine özgü, sıfırdan farklı bir miktarda enerjisi bulunur.

Bunu kavramsal olarak anlamanın ve gözümüzde daha iyi canlandırabilmemizin bir yolu, parçacık-karşıt parçacık (İng: “antiparticle”) çiftleridir. Dikkat edin: Bu sanal parçacıklar, gerçek parçacıklar değillerdir; sadece kavramsal olarak sıfırdan farklı vakum enerjisini tahayyül etmenin bir yolundan ibarettir. Ancak kuantum mekaniğine göre, parçacıklar ve antiparçacıklar durmaksızın var olup yok olduğu söylenir. Bu konuyu birazdan tekrar vurgulayacağız.

 

Normalde bu sanal parçacık çiftleri, var olmaya başladığında, pek uzun süre varlıklarını koruyamazlar ve ikili, birbirlerini kısa sürede yok ederler. Zaten Büyük Patlama’dan kısa bir süre sonra, bilinmeyen bir nedenle antimaddeden daha çok miktarda madde üretildiği için, Evren’de bir şeyler var olabilmiştir. Bu dengesizlik hali olmasaydı, Evren kısa sürede kendi kendini yok edecekti.

Kara deliklerin sınırındaysa işler normalde olduğu gibi işlemez.

Olay ufkunun içinde ve dışında ortaya çıkabilen parçacık-karşıt parçacık çiftlerinin davranışlarının görselleştirilmesi.
Olay ufkunun içinde ve dışında ortaya çıkabilen parçacık-karşıt parçacık çiftlerinin davranışlarının görselleştirilmesi.
Ulf Leonhardt | University of St Andrews

Bir kara deliğin civarında bu parçacık-antiparçacık çiftlerinin ortaya çıktığı üç bölgeniz vardır:

  1. Parçacık çiftlerinin her ikisinin de kara deliğin olay ufkunun dışında ortaya çıktığı, var olduğu ve birbirini yeniden yok ettiği bir bölge.
  2. Parçacık çiftlerinin her ikisinin de kara deliğin olay ufkunun içinde ortaya çıktığı, var olduğu ve birbirini yeniden yok ettiği bir bölge.
  3. Parçacık çiftlerinin her ikisinin de kara deliğin olay ufkunun dışında ortaya çıktığı, ancak birinin kara deliğin içine düştüğü, diğerininse kaçtığı bir bölge.

Evet, bu aşırı basitleştirilmiş bir anlatımdır. Ancak bu anlatım, her ne kadar Hawking radyasyonunun nereden geldiğini veya enerji spektrumunun ne olduğunu tam olarak tanımlamasa da, nitel özellikleri doğru açıklayan en basit görselleştirmelerden biridir.

 

Hawking, kendi teorisini, oldukça popüler olan kitabında, aşırı miktarda kütleçekiminden etkilenen sanal parçacıkların, bu güçlü kütleçekiminden dolayı negatif enerji kazanan parçacık çiftlerinden bir tanesinin karadelikten kaçarak kütle yitimine neden olduğu şeklinde açıklar.[4]

Kara deliğin içine düşenin, efektif olarak negatif enerjiye sahbip olduğu söylenir. Kara delikten kaçan ise pozitif enerjiye sahiptir. İşte kara delikten kaçmayı başaran parçacık, Hawking Radyasyonu dediğimiz şeyin sebebidir. Kara deliğe düşen parçacık çiftinin enerjisi de efektif olarak negatif olduğu için, bir yerde kara delikten enerji kaçıyor demektir; bir diğer deyişle, kara deliğin enerjisi (ve dolayısıyla kütlesi) giderek azalmaktadır.

Hawking radyasyonu, bir kara deliğin olay ufkunu çevreleyen kavisli uzay-zamandaki kuantum fiziğinin tahminlerinden kaçınılmaz olarak ortaya çıkan şeydir. Bu diyagram, radyasyonu oluşturan şeyin olay ufkunun dışından gelen enerji olduğunu, yani kara deliğin telafi etmek için kütlesini kaybetmesi gerektiğini gösteriyor.
Hawking radyasyonu, bir kara deliğin olay ufkunu çevreleyen kavisli uzay-zamandaki kuantum fiziğinin tahminlerinden kaçınılmaz olarak ortaya çıkan şeydir. Bu diyagram, radyasyonu oluşturan şeyin olay ufkunun dışından gelen enerji olduğunu, yani kara deliğin telafi etmek için kütlesini kaybetmesi gerektiğini gösteriyor.
Ethan Siegel

Tekrar ediyoruz: Bu noktada unutmamanız gereken şey, sözünü ettiğimiz bu “çiftlerin” aslında fiziksel olarak gerçek olmadıklarıdır. Gerçekte, kara delikten dışarı çıkan şey, bir kara cisim ışıması spektrumudur. Bu spektrum, karadeliğin olay ufkunun boyutuyla ilgilidir. Ayrıca saçılan spektrum, çoğunlukla son derece düşük enerjili fotonlar formundadır ve daha küçük kara delikler daha hızlı ışıma gerçekleştirir. Dolayısıyla bir kara delik buharlaşıp küçüldükçe giderek daha da hızlı buharlaşır.

Bunun önemi şudur: Kara deliğin içinde ortaya çıkan bir parçacık çifti, kara deliğe kütle ekleyemez, çünkü oradaki toplam enerji her zaman aynıdır. En nihayetinde, parçacık-antiparçacık çiftlerinin enerjisi, etraflarındaki uzaydan gelmektedir. Ancak dışarıdaki uzaydan kaynaklanarak kara delikten uzaklaşan gerçek radyasyonla sonuçlanan bir enerjiniz varsa, bu enerjinin kara deliğin kendisinden gelmesi ve kütlesini düşürmesi gerekir. Hawking radyasyonu bu şekilde çalışır ve bu yüzden kara delikler giderek buharlaşırlar.

 
Dışarı radyasyon saçan bir kara delik tasviri.
Dışarı radyasyon saçan bir kara delik tasviri.
NASA; Jörn Wilms (Tübingen); ESA

Özetle Hawking Radyasyonu, birbirine zıt olan ve normal zamanlarda uzay-zaman dokusunun içinde yoktan var olup vardan yok olan parçacık-antiparçacık çiftlerinden birinin kara deliğe düşmesi, diğerinin kara delikten kaçması yoluyla oluşur. Bu parçacıklar devasa bir kütleçekim farkıyla birbirinden ayrıldıkları için, birbirlerini yok edemezler ve böylece kara deliğin kütlesi üzerine etki etmiş olurlar.[3]

Kaynak: Evrim Ağacı

 
Hücre Yapısı: Organel Nedir? Hücrelerde Hangi Organeller Bulunur?
Apple, Wi-Fi konusunda bağımsızlığa hemen ulaşamayacak

Reactions

2
0
0
0
0
0
Zaten bu yazı için tepki gösterdi.

Tepkiler

2

Kimler beğendi?

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir